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For a linear controlled system we examine the evasion problem on an infinite 

semi-interval of time. The paper abuts the investigations in [l - 51. The solu- 
tion is effected by the scheme of control with a leader [3, 41. 

1. We examine a controlled system described by the vector differential equation 

dx / dt = Ax + Bu -1 Co, I( E P, u E Q” (1.1) 

Here I is the k-dimensional phase coordinate vector, u and u are r(r)- and r’“)-dimen- 

sional vectors, respectively ; A, B, C are matrices with constant coefficients of dimen- 

sion k X k, k X r(l), k X rt2), respectively ; the first and second player’s controls are 

constrained by the conditions indicated above, where P and Q are convex compacta 
in the corresponding vector spaces. The symbol Q” denotes the closed Euclidean a- 
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neighborhood of set Q, thus : Q” = {Y = 4 -t n: q f Q, I/ in jl < a}. Here and subse- 

quently, // m jj is the Euclidean norm of vector m. In the space (t, Z} we are given a 
certain set M, being a convex compactum in space (x}. The problem is to construct a 
strategy V ensuring, for all motions zA [t] generated by this strategy, evasion from the 
E-neighborhood M’ of set M during the infinite semi-interval k, d t < CO for any ac- 

tion of the first player, constrained by the condition u E P. 

The terms encountered in this paper, e, g. strategies, motions, Euler polygonal lines, 
and their notation, are to be understood in the same sense as they were defined in [3]. 

kt us consider an auxiliary system, described by the vector differential equation 

dw / dt = Aw + Bu, -+ Cv*, Llq E P, 0,: E Q (I. 2) 

where the vectors W, u,, I+* are of the same dimension as x, u, U, respectively. In the 

space (t, w} we construct a set H consisting of points satisfying the condition p ({t, 

2 It]}, M) > &o > 0 for t>, to. Then, in accordance with the results in [SJ , the follow- 

ing alternative holds for the motions w [t]. One of the two conclusions is vaiid for every 

initial position {to, wo} : either we can find an istant 6 > to and a strategy U. + u, x 
(t, w, 7-*) (*) such that each motion w [t, to, wo, U,] leaves H at least once for t E [to, 

Sl or we can construct a strategy v,” which guarantees the retention of every motion 
w ft, to, wo, V**] in H for all t > to. 

We shall assume that the second one of these constructions is fulfilled. In this case, 

the results of Sect. 2 of [5], in the terminology adopted in [3], signify that there exists a 
set W C H which is a v-stable bridge T/t;:. The symbol I+‘; denotes that this bridge 

does not intersect the set MEa on the whole semi-axis [to, XI). Here, by the property of 
r-stability of the bridge W,4: we mean the following. Suppose we have the position 

it** Wb} E r+$;. We select any t* > t, and U* It? E Pa arbitrarily measurable on the 
interval [t:, , t*]_ Then we can choose a measurable control c.* [t] E Q such that the 
motion w [t] described by the equation 

dw / dt = Aw [t] + Bu* [t] + Cu* [t] 

remains on Wz on the interval [t*, t*]. 

In [S] it was shown that it is possible to construct the second player’s position strategy 

causing the motion w ItJ to evade set M for to d t < 3~. Here we have noted that to 
realize the evasion for all the Euler polygonal lines alA [tl approximating motion w [t] 
requires additional stability conditions. The present paper is devoted to solving the prob- 

lem of realizing such stability. 

We construct the second player’s strategy causing the approximating Euler polygonal 
lines ,‘A It1 to evade the set ME during the infinite semi-interval of time, with the aid 
of a control with leader u) it1 [3, 41. The problem is formulated precisely in the follow- 
ing way. For a given initial position {to, 10) in the controlled system (1. l), find the 
strategy 

1. f- (1. (r, .r, U’), M* (‘c, X:, U’), I?* (t, -c, 2, U’, II, (*))} u. 3) 

which for a sufficiently small partition step 6 = SUpi (T~+~ - %il (i = 0, i,...) of the t - 
axis ensures the evasion of all the approximating Euler polygonal lines x3. [t] = xl [t, 

‘) Editor’s Note : The symbol -+ (used throughout this paper), denotes the correspon- 
dence between the strategy and the function prescribing this strategy. 
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h, J%, v, IA (.)I from the e -neighborhood ME of set M for all to < t < (x‘, i. e. for 
a sufficiently small t: > 0 we can find 6, > 0 such that for all 6 < b, the strategy 

found guarantees the evasion of Jo It1 from ME for all t Z t,,. 
The scheme for constructing such a strategy is related to the solving of the problem 

on stabilizing a system described by the vector differential equation (s is the k-dimen- 

sional phase vector ; I and ~1 are the control vectors) 

dsi dt :~ As- Bl+ Cm (1.4) 

2. Let us describe the construction of motions X~ It] and 1~:~ It]. According to the 
problem statement. in the actual system (1.1) the control u is prescribed by the first 
player,and control u bx the second player. In the auxiliary system (1.2) both controls 

u* and v* are prescribed by the second player. Then the second player is faced with 
the problem: by dealing with the controls I(*, L’* in system (1.2) and with the control 
1: in system (1. l), to hold the motion UJ_+. [t] on the bridge l+‘z (which is possible by 

virtue of the u -stability of bridge Wz) and to manage things so that the motion Ed It] 
of the actual system (1.1) traces out the motion u,~ [t] of the auxiliary system (1.2). 
Then, using the terminology of the theory of stability of motion, the motion So [t] can 
be considered as the perturbed motion relative to the unperturbed motion u’~ [t]. 

In accordance with the problem statement we examine two motions: the led [driven] 
motion “A [t] in the given actual controlled system, described according to [3, 41 by the 
equation 

ds, [t] i dt = AX, It1 $- BU it] + CL> (TV, sA [-ci], wA ITS]), So [to] -- r. (2.1) 

(Ti 7; t < 7it1, i ~- 0, 1, . .) 

and the leading [driving] motion w A [tl produced by the auxiliary system and described 
by the equation (2.2) 

duA [t] / dt = 21~;~ [t] -+ Bu, (T;, I~ [q], ws [ri]) + L’v, (t, T,, .cA [q], 

/i’A [ti], /t*(‘)) (ti < t < Titl, i L 11, 1, . .) 

The controls II*, I’*. v are chosen in the following manner. We first solve the problem 

of stabilizing system (1.4), i.e. find controls 1 (s)’ and r,l (~1 which ensure the asympto- 
tic stability of the trivial solution of system (1.4) with I = 1 (s) . I/L = m(s) . If system 
(1.4) is stabilizable (and this we assume), then the controls stabilizing system (1.4)exist 
and are the linear vector-valued functions I -=: I(S) and I)L = IU. (s) see [6]). Substituting 

the 1 _ I(s) and I)L -= r)!(s) found into (1.4), we obtain a linear asymptotically-stable 
system. Given the negative-definite quadratic form o (s) = - /j sli2, let us find a positive- 

definite quadratic form L(s) for which the equality 

(dl, / dt)(,,,) m= (CJL / as) (11s - BZ(s) -+ C??L(S)) ’ ~_ II s/;‘L (2.3) 

is fulfilled. Here the symbol (df, i dt)(,,,) denotes the total time derivative relative to 

system (1.4), while the prime denotes transposition. 
We shall form the motions Z~ [t] and 1~~ [t] described by Eqs. (2.1) and (2.2) as fol- 

lows. At the initial instant t = fO = t0 we set We [to] = zA [to] = 20 and we arbitrar- 

ily select a control v [t] = v [T,,] E Q” on the semi-interval [Q, %) . Also arbitrarily 
we select the control Q It] = U* [to] E P” for t E [TV, %J and we define v* [t] E 0 
for t E [z,, ~~1) as a program control such that the condition {tr, We bll) E WC is ful- 
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filled for the motion W& [i] . The possibility of such a choice of control follows from 
the L’ -stability condition for bridge WG. Now suppose that at the instant t = r; (i = 
1, 2,. . .) we have realized the points (zi, x3. [ti]} and Iti, WA lzil}. We constructthe 

vector s = z3. [TV] - IU~ [TV] and we set up the equations of perturbed motion on the 
semi-interval [ri, ti+r) in the formalization adopted. We obtain 

ds, [t] / dt = ASA [t] + B (U [t] - [(*i) f C (vi - ~‘*i) (7i < t< ‘i+l) (2.4) 

At the instant t = 7ti , from the values zb [ti], w, [ti], s,? [TiI we construct the con- 

trols U*i, uir ~‘*i [t] in the following way. We construct the control U* [tl = u*i = 

I(* (pi, ~1 !til, wA ITi]) for t E [Ti, z~+I) as the SUM 

U*i = P (til “A ]til, WA [Till + L ts_i bil) (2.5) 

Here the function I (s) is chosen from the solution of the stabilization problem for sys- 
tem (1.4), while the control p is selected from the maximum condition 

(2.6) 

From the +i obtained we find u* [t, Tir x3 [tiI, 1~‘~ [ri], u*i (-)I as the program con- 

trol “*i = v*i [t] (Ti < t < zisl) SO that the motion 11~1 ]r],described by Eq. (2.2) is held 

on the bridge WC for ti < t < ‘ti+l 

We construct the control tit] = vi = v (TL, zA [Ti], wA [pi]) for t E lzi, ~i+1) as 

Vi = 4 (ti, Ii [-Cily WA [Til) + IrL (s> I7il) (2.7) 

Here the function m (s) is chosen from the solution of the stabilization problem for sys- 
tem (1.4). while the control 4 is selected from the minimum condition 

min (dL i 8~)‘~~ Cq (pi, zA [nil, WA Id) 
lV=Q (2.8) 

Equalities (2.5). (2.7) and the rule for constructing ~;r~ determine the strategy (1.3) to 
be constructed. This strategy solves the problem posed. In fact, the total derivative of 

quadratic form L (s) by virtue of (2.4) on the semi-interval Ti < t < T~+~ has the form 

dL / dt = (dL / as),’ 8, 8 _ -4S~[t] $ B (~ [t] - p (ti, XA[Ti], We [ti]) - (2.9) 

2 (sA[zi]) + C (Q (tit xA[til, ~‘3 hil) + T)! (Sl [TiI) - (‘*i [tI) 

For convenience we rewrite (2.9) as 

dL / dt = [(aL / a~)t - (c3L / a~),~]’ t) f (8L / aS)Ti’zA (Si It] - Si hi]) f (2*10) 

(SlL / a~),.’ B (U [tI - p (Ti, ~1 [TiI, WA [TiI)) f 
(BL / aS),I’C (4 (ti, XA LTi19 WA fail) - u*i ItI) + 
(aL/ a~),~: [AsA (~~1 - Bl (sA [pi]) + Cm (sl [%])I 

Taking (2.3), (2.6) and (2.8) into account we obtain the estimate 

dL / dt -< - (1 sA [q]1j2 + [(aL / as), - (aL / a~),~‘]0 + (aL / as)Ti’A x (2.11) 

‘(SA [tl - s3, lTil) 

Either continuous functions or bounded quantities occur in the right-hand side of inequa- 
lity (2.11); therefore, the estimate 

dL i dt < - I/ sA It] 11’ j- ~6, y > 0 is a constant (2.12) 
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is valid almost everywhere on the semi-interval [zi, zi+r) for (2.11). 

In the space {s} we now construct the p-sphere // s // < p satisfying the following con- 
ditions: II 1 (s) I( < Q, 11 nt (s) I/ < a hold inside the b-sphere and, in addition, b < E,,. 
Let us consider the surface L (s) = cr, where c1 = min (cl’, cl”). Here the constant cl’ 
is chosen from the condition that the surface L (s) = c,' lies wholly inside the S-sphere, 
while the constant cl” is such that the surface L (s) == CI” is inscribed in the sphere 
/I s /\ < cB, i.e. from the condition L (s) < cl” follows I/ s/j < c2, where c2 = f,, - c. 
Obviously, we can find a number 6 0 > 0 such that the sphere // s /I 2 < yd,, lies within 
the surface L (s) = ~1. From inequality (2.12) it follows that the sign of the derivative 

(dL 1 d&l, is negative between the surfaces I/ s 11 2 x ~6, and L (s) = ct. This signifies 

that the motion sJ [t], starting from the sphere // s // 4 < $,, does not leave the region 

L (s) 5; C1 during the semi-interval [pi, Tag,) , i.e. the fulfillment of the inequality 
L (s) < ~1 is ensured for t E [ti, -cir,) ; whence follows the inequality /I sA [t] // .< c2 
or jj x3 [t] - ws [tl Iis< co -- e 

Thus, for t t ITi, Ti+,) we have p ({t, We [t]), M)> e, and p (it, zJ it]}, {t, We x 
[tll) 3 ‘0 - e. Here p ({t, u13. It]), M) is the distance from the point {t, We [t]) to set 
M in the Euclidean metric. Then 

The result obtained can be formulated as a theorem. 
Theorem. Suppose that the following conditions are fulfilled for the initial posi- 

tion {to, z~}: 

1) whatever be the instant 6 E [to, ix~) and the strategy u, .+ U* (t, U:, U.J, at 
least one motion w [t, t,, ID,,, U,] remains in H for t E Ito, 61; 

2) system (1.4) is stabilizable. 
Then we can find a strategy LY +- {u ( T, 2. I(‘), IL* (T, Z, W), L’* (t, T, I, It, u* (*))I of 

the control with leader such that for arbitrarily small a > 0 and E > 0 (e < t‘,J, we 
can find a number b, > 0 such that evasion from the t’ -neighborhood ME of set .M is 

ensured during the infinite time semi-interval for all motions Z~ [t] = J~ It. f,, zo, J’, 

u (.)] generated by this strategy and having the step supi (~~+r - ti) .< 6, (i = U, 1.. .) 
In conclusion we note that a complete description of bridge WE: is, in general, not 

required when constructing the control LV in concrete cases, but it is sufficient to know 

only how to compute, for each selected control ~1~:) the control o, which retains the 

motion LL’~ It] on the bridge bvg for ‘i b t < T~+~. Thus, the proposed stable procedure 
of position control v of the actual system (1.1) can be applied right away in any case 
when for the model (1.2) we know or we can effectively find the solution of the p-eva- 
sion problem under information discrimination. Sometimes this can lead to a very sim- 

ply realizable procedure of position control. 
For example, we examine the evasion problem for a pair of objects of the same type 

[7], where the condition of contact is the coincidence of vectors y and 2 

rly / dt z zly + su, IL E P (2.13) 

d z i dt -= AZ + Bv, c E v* 

Assume that among the eigenvalues of matrix L4 there is at least one with a positive 

real part ; the system 
ds / dt = 1 Is -; BliL (2.14) 
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is stabilizable and we can choose P, so as to fulfill the conditions 

P* 3 Pa, Q, I> Q"> Q = xP, (0 < x < 1) 

We set x = y - z and we write the model’s equation as 

dw J dt = Aw + Bu, - Bv,, u* E P*, v* E Q 

If the initial position {to, Y,, zO} is such that it is impossible to bring system (2.14) into 
the ~-neighborhood of point s = 0 in finite time by a choice of control rnE (i- x) E,, 

then to retain the position {t, w [t]} on bridge WE7 it is sufficient to choose u, such 

that u, - L’* E (1 - x) P,. Thus, in the given example all the needed constructions 

connected with the bridge Wz turn out to be very simple,although the description of 

the bridge itself remains unknown. 
The author thanks N, N. Krasovskii for posing the problem and for valuable advice, 
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We use the methods of the theory of bifurcation and piecewise linear approxima- 

tion to the characteristic with a falling segment, in the qualitative investigation 

of a system which is of practical interest, We trace the possible bifurcations and 
follow the behavior of the bifurcation curves. The system has been studied by a 

number of authors, using various approximations [l - 91, however none of them 
gave a complete qualitative investigation. 

1. Equation, of motion. We consider the system 


